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Abstract. Automatic cloud type recognition of ground-based infrared images is still a challenging task. A novel cloud 

classification method is proposed to group images into five cloud types based on manifold and texture features. Compared 

with statistical features in the Euclidean space, manifold features extracted on Symmetric Positive Definite (SPD) matrix 

space can describe the non-Euclidean geometric characteristics of the infrared image. The proposed method comprises three 

stages: pre-processing, feature extraction and classification. Cloud classification is performed by the Support Vector 10 

Machine (SVM). The datasets are comprised of the zenithal and whole-sky images taken by the Whole-Sky Infrared Cloud-

Measuring System (WSIRCMS). Benefiting from the joint features, compared to the recent cloud type recognition methods, 

the experimental results illustrate that the proposed method acquires a higher recognition rate and exhibits a more 

competitive classification result on the ground-based infrared datasets. 

  Introduction 15 
The cloud has an essential impact on the absorption, scattering, emission of atmosphere, the vertical transport of heat, 

moisture and momentum (Hartmann et al., 1992; Chen et al., 2000). Cloud cover and cloud type can affect the daily weather 

and climate change through its radiation and hydrological effects (Isaac and Stuart, 1996; Liu et al., 2008; Naud et al., 2016). 

Therefore, accurate cloud detection and classification is necessary for meteorological observation. Nowadays, cloud cover 

changes and cloud type determination have been available through the ground-based sky imaging systems (Souzaecher et al., 20 

2006; Shields et al., 2003). Different from traditional manual observation, sky-imaging devices can obtain continuous 

information of sky condition at a local scale with a high spatial resolution. 

However, due to subject factors and a rough measuring system, the estimation of cloud cover and type may weaken their 

credibility (Tzoumanikas et al., 2012). Some attempts have been made to develop algorithms for cloud classification of 

ground-based images (Buch and Sun, 2005; Singh and Glennen, 2005; Cazorla et al., 2008; Heinle et al., 2010; Ghonima et 25 

al., 2012; Taravat et al., 2014; Zhuo et al., 2014). Wang and Sassen (2001) developed a cloud detection algorithm by 

combining ground-based active and passive remote sensing data to illustrate how extended-time remote sensing datasets can 

be converted to cloud properties of concern to climate research. Li et al. (2002) proposed a method for automatic 

classification of surface and cloud type using Moderate Resolution Imaging Spectro-radiometer (MODIS) radiance 

measurements, whose advantage lied in its independence of radiance or brightness temperature threshold criteria, and its 30 
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interpretation of each class was based on the radiative spectral characteristics of different classes. Singh and Glennen (2005) 

adopted the k-nearest neighbour (KNN) and neural network classifiers to identify cloud types with texture features, including 

autocorrelation, co-occurrence matrices, edge frequency, Law’s features and primitive length. Calbó and Sabburg (2008) 

extracted statistical texture features based on the greyscale images, pattern features based on the spectral power function of 

images and other features based on the thresholded images for recognizing the cloud type with the supervised parallelepiped 5 

classifier. Heinle et al. (2010) chose 12 dimensional features mainly describing the colour and the texture of images for 

automatic cloud classification, based on the KNN classifier. Besides the statistical feature like the mean grey value of the 

infrared image, Liu et al. (2011) explored another six structure features to characterize the cloud structure for classification. 

Zhuo et al. (2014) validated that cloud classification may not perform well if the texture or structure features were employed 

alone. As a result, texture and structure features were captured from the colour image and then fed into a trained Support 10 

Vector Machine (SVM) to obtain the cloud type. Different from traditional feature extraction, Shi et al. (2017) proposed to 

adopt the deep convolutional activations-based features and provided a promising cloud type recognition result with a multi-

label linear SVM model. 

Automatic cloud classification has made certain achievements; however, the cloud classification of ground-based infrared 

images poses a great challenge to us. By far, few research works of cloud classification have been dedicated to the ground-15 

based infrared images (Sun et al., 2009; Liu et al., 2011). Ground-based infrared images can be obtained continuously day 

and night but lack colour information, so it’s hard to reach a perfect performance when the recognition method of colour 

images is applied to the infrared images. Most recent methods conducted on the RGB visible images (Heinle et al., 2010; 

Zhuo et al., 2014; Li et al., 2016; Gan et al., 2017) cannot directly be exploited on the cloud type classification of infrared 

images owing to the lack of colour information. 20 

Nowadays, the Symmetric Positive Definite (SPD) matrix manifold has achieved success in many aspects, such as action 

recognition, material classification and image segmentation (Faraki et al., 2015; Jayasumana et al., 2015). Although it proves 

effective, few researches are pursued for the task of cloud classification with manifold features. In this paper, a novel cloud 

classification method combining manifold and texture features is proposed for ground-based infrared images.  

To exhibit the classification performance, we have compared the results with the other two models (Liu et al., 2015; 25 

Cheng and Yu, 2015), which are adapted for the classification task of infrared images. To make up for the weakness of the 

Local Binary Patterns (LBP) that cannot describe the local contrast well, Liu et al. (2015) proposed a new descriptor called 

Weighted Local Binary Patterns (WLBP) for the feature extraction. And then the KNN classifier based on the chi-square 

distance was employed for cloud type recognition. Cheng and Yu (2015) incorporated statistical features and local texture 

features for block-based cloud classification. As Cheng and Yu (2015) reported, the method combining the statistical and 30 

uniform LBP features with the Bayesian classifier (Bensmail and Celeux, 1996) displayed the best performance in the 10-

fold cross validation overall. 

In this paper, the data and methodology of the method are described in Sect. 2. Section 3 focuses on the experimental 

results. Conclusions are summarized in Sect. 4. 
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  Data and Methodology 
In this section, the datasets and the methodology for cloud classification are introduced. The proposed method contains three 

main steps: pre-processing, feature extraction and classification. The framework is illustrated in Fig. 1. 

2.1 Dataset and pre-processing 

The datasets include the zenithal images and whole-sky images, which are gathered by the Whole-Sky Infrared Cloud 5 

Measurement System (WSIRCMS) (Liu et al., 2013). The WSIRCMS is a ground-based passive system that an uncooled 

microbolometer detector array of  pixels is used to measure downwelling atmospheric radiance in 8-14μm (Liu et 

al., 2011). A whole-sky image is obtained after combining the zenithal image and other images at eight different orientations. 

As a result, the zenithal image has a resolution of pixels while the whole-sky image is of  pixels. The 

datasets are provided by National University of Defense Technology in Nanjing, China. 10 

The cloud images used in the experiment are selected with the help of two professional meteorological observers with 

many years of observation experiences. The selection criterion is that the chosen images should hold high visual quality and 

can be recognized by visual inspection. All infrared cloud images are labelled to construct the training set and testing set. To 

guarantee the golden-standard’s confidence, only images labelled same by two meteorological observers are finally chosen 

as the dataset used in this study. Different from traditional cloud classification by observers, automatic cloud classification 15 

by the devices needs a new criterion for recognition. According to the morphology and generating mechanism of the cloud, 

the sky condition is classified into five categories in this study (Sun et al., 2009): stratiform clouds, cumuliform clouds, 

waveform clouds, cirriform clouds and clear sky. The sky condition and its corresponding description are as shown in Table 

1. 

The zenithal dataset used in this study is selected from historical dataset purposely to avoid a complex mixture of cloud 20 

types. The typical samples from each category are demonstrated in Fig. 2. As listed in Table 2, the zenithal dataset is 

comprised of 100 cloud images each category. 

The whole-sky dataset is obtained during July to October in 2014 at Changsha, China. Since the whole-sky image is 

obtained by combining the nine sub-images at different orientations, the division rules of the whole-sky dataset remain the 

same as that of the zenithal dataset. The whole-sky samples from each category are exhibited in Fig. 3. As listed in Table 2, 25 

the number of stratiform clouds, cumuliform clouds, waveform clouds, cirriform clouds and clear sky is 246, 240, 239, 46 

and 88, respectively. 

As Fig. 3 shows, a pre-processing mask is provided on the whole-sky images, which is used to extract the region of 

interest (ROI) from the images, which is the areas of the clouds rather than the parts out of the circle. Different from the 

whole-sky images, all parts of the zenithal images are ROI. Thus, we implement the feature extraction directly on the 30 

original zenithal images. 

320 240×

320 240× 650 650×
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2.2 Feature extraction 

In addition to the manifold features proposed in this work, the texture features are also combined. The manifold features of 

the ground-based infrared image are extracted on the SPD matrix manifolds, and after that, they are mapped into the tangent 

space to form a feature vector in Euclidean space. The texture features represent the statistical information in Euclidean 

space; on the contrary, the manifold features describe the non-Euclidean geometric characteristics of the infrared image. 5 

2.2.1 Texture features 

In this paper, the Grey Level Co-occurrence Matrix (GLCM) is used to extract the texture features, including energy, entropy, 

contrast and homogeneity (Haralick et al., 1973). Each matrix element in the GLCM represents the joint probability 

occurrence 𝑝𝑝(𝑖𝑖, 𝑗𝑗) of pixel pairs with a defined direction θ and a pixel distance d having grey level values 𝑖𝑖 and 𝑗𝑗 in the 

image. 10 

GLCM =  �

𝑝𝑝(0,0) 𝑝𝑝(0,1) 𝑝𝑝(0,2) … 𝑝𝑝(0, 𝑘𝑘 − 1)
𝑝𝑝(1,0) 𝑝𝑝(1,1) 𝑝𝑝(1,2) … 𝑝𝑝(1, 𝑘𝑘 − 1)
⋮ ⋮ ⋮ … ⋮

𝑝𝑝(𝑘𝑘 − 1,0) 𝑝𝑝(𝑘𝑘 − 1,1) 𝑝𝑝(𝑘𝑘 − 1,2) … 𝑝𝑝(𝑘𝑘 − 1, 𝑘𝑘 − 1)

�

𝑘𝑘×𝑘𝑘

               (1) 

The energy measures the uniformity and texture roughness of the grey level distribution: 

Energy =  ∑ ∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)2𝑘𝑘−1
𝑗𝑗=0

𝑘𝑘−1
𝑖𝑖=0                     (2) 

The entropy is a measure of randomness of grey level distribution: 

Entropy =  −∑ ∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)log2𝑝𝑝(𝑖𝑖, 𝑗𝑗)𝑘𝑘−1
𝑗𝑗=0

𝑘𝑘−1
𝑖𝑖=0                    (3) 15 

The contrast is a measure of local variation of grey level distribution: 

Contrast =  ∑ ∑ (𝑖𝑖 − 𝑗𝑗)2𝑝𝑝(𝑖𝑖, 𝑗𝑗)2𝑘𝑘−1
𝑗𝑗=0

𝑘𝑘−1
𝑖𝑖=0                    (4) 

The homogeneity measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal: 

Homogeneity =  ∑ ∑ 𝑝𝑝(𝑖𝑖,𝑗𝑗)
1+|𝑖𝑖−𝑗𝑗|

𝑘𝑘−1
𝑗𝑗=0

𝑘𝑘−1
𝑖𝑖=0                     (5) 

As the number of intensity levels 𝑘𝑘 increases, the computation of the GLCM increases strongly. In this work, 𝑘𝑘 is set with 20 

16 and then the texture features are obtained by calculating the GLCM with d = 1 and θ = 0°, 45°, 90°, 135°. To avoid the 

complexity and reduce the dimension, mean values in four directions are obtained as the texture features. In the experiments, 

we find that these texture features are significant for the cloud classification of the ground-based infrared image. 

2.2.2 Manifold features 

The manifold features are attained by two steps: computing the regional Covariance Descriptor (CovD) and mapping the 25 

CovD into its tangent space to form a feature vector. 

Step 1: Computing the regional CovD 
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Suppose the image 𝐼𝐼 is of the size 𝑊𝑊 × 𝐻𝐻, its d-dimensional features containing greyscale and gradient at each pixel are 

computed, which compose the feature image 𝐹𝐹, whose size is 𝑊𝑊 × 𝐻𝐻 × 𝑑𝑑: 

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝐼𝐼, 𝑥𝑥, 𝑦𝑦)                     (6) 

where the feature mapping 𝑓𝑓 is defined as: 

𝑓𝑓 =  �𝐼𝐼(𝑥𝑥, 𝑦𝑦)   |𝐼𝐼𝑥𝑥|   �𝐼𝐼𝑦𝑦�   �|𝐼𝐼𝑥𝑥|2 + �𝐼𝐼𝑦𝑦�
2   |𝐼𝐼𝑥𝑥𝑥𝑥|   �𝐼𝐼𝑦𝑦𝑦𝑦��

T

                 (7) 5 

In which  (𝑥𝑥, 𝑦𝑦) denotes the location, 𝐼𝐼(𝑥𝑥, 𝑦𝑦) denotes the greyscale. |𝐼𝐼𝑥𝑥|, �𝐼𝐼𝑦𝑦�, |𝐼𝐼𝑥𝑥𝑥𝑥| and �𝐼𝐼𝑦𝑦𝑦𝑦� represent the first and second 

order derivative in the direction of 𝑥𝑥 and 𝑦𝑦 at each pixel, respectively. �|𝐼𝐼𝑥𝑥|2 + �𝐼𝐼𝑦𝑦�
2
 denotes the modulus of gradient. 

For the feature image 𝐹𝐹, supposing it contains 𝑛𝑛 = 𝑊𝑊 × 𝐻𝐻 points of d-dimensional features {𝑓𝑓𝑘𝑘, 𝑘𝑘 = 1,2, … , 𝑛𝑛}. Its CovD 

is a 𝑑𝑑 × 𝑑𝑑 covariance matrix, computed by Eq. (8): 

𝐶𝐶 =  1
𝑛𝑛−1

∑ (𝑓𝑓𝑘𝑘 − 𝜇𝜇)(𝑓𝑓𝑘𝑘 − 𝜇𝜇)T𝑛𝑛
𝑘𝑘=1                     (8) 10 

where 𝜇𝜇 =  1
𝑛𝑛
∑ 𝑓𝑓𝑘𝑘𝑛𝑛
𝑘𝑘=1 , which represents the feature mean vector. 

The CovD can fuse multiple dimensional features of the image and express the correlations between different features. It 

removes the mean of the sample features; therefore, it has certain effects of denoising. The CovD is symmetric and its 

dimension is only 𝑑𝑑(𝑑𝑑 + 1) 2⁄ . If we convert the CovD into a feature vector to describe the image, its dimension is 𝑛𝑛 × 𝑑𝑑, 

which needs a high computation cost for cloud classification. 15 

Step 2: Obtaining the feature vector by mapping the CovD into its tangent space 
Generally speaking, the manifold is a topological space that is locally equivalent to a Euclidean space. The differential 

manifold has a globally defined differential structure. Its tangent space 𝑇𝑇𝑋𝑋𝑀𝑀 is a space formed by all possible tangent vectors 

at a given point 𝑋𝑋 on the differential manifold. For the Riemannian manifold  𝑀𝑀, an inner product is defined in its tangent 

space. The shortest curve between two points on the manifold is called the geodesic and the length of the geodesic is the 20 

distance between two points. 

All SPD matrices form a Riemannian manifolds. Suppose 𝑆𝑆𝑑𝑑  is a set of all 𝑛𝑛 × 𝑛𝑛  real symmetric matrices: 𝑆𝑆𝑑𝑑 =

 {𝐴𝐴 ∈ 𝑀𝑀(𝑑𝑑): 𝐴𝐴T = 𝐴𝐴} , where 𝑀𝑀(𝑑𝑑) represents the set of all 𝑑𝑑 × 𝑑𝑑 matrices, so that 𝑆𝑆++𝑑𝑑 =  {𝐴𝐴 ∈ 𝑆𝑆𝑑𝑑: 𝐴𝐴 > 0} is the set of all 

𝑑𝑑 × 𝑑𝑑 SPD matrices, which construct a 𝑑𝑑(𝑑𝑑 + 1) 2⁄  dimensional SPD manifold. According to the operation rules of the 

matrix, the set of the real symmetric matrix is a vector space while the real SPD matrix space is a non-Euclidean space. A 25 

Riemannian metric should be given to describe the geometric structure of the SPD matrix and to measure the distance of two 

points on 𝑆𝑆++𝑑𝑑 . 

Based on the bi-invariant Riemannian metric (Arsigny et al., 2008), the distance between 𝐴𝐴 and 𝐵𝐵 on the SPD matrix 

manifold is 𝑑𝑑(𝐴𝐴, 𝐵𝐵) =  ‖log(𝐴𝐴) − log (𝐵𝐵)‖2, where log(∙) denotes matrix logarithm. The logarithmic operation is applied in 

the elements of the diagonal matrix obtained by the singular value decomposition of the SPD matrix. 30 
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The logarithmic operator is valid only if the eigenvalues of the symmetric matrix are positive. When no cloud is observed 

in the clear sky, the CovD of the image features could be non-negative definite, and in this case, it needs to be converted to a 

SPD matrix. We can formulate it as an optimization problem (Harandi et al., 2015): 

min
𝐴𝐴
‖𝐶𝐶 − 𝐴𝐴‖𝐹𝐹

s. t. 𝐴𝐴 + 𝐴𝐴𝑇𝑇 > 0
 (9) 

where 𝐶𝐶 is a CovD and 𝐴𝐴 is the closest SPD matrix to 𝐶𝐶.5 

For a SPD matrix 𝐴𝐴, its corresponding feature vector can be represented as Eq. (10):

𝑎𝑎 = 𝑉𝑉𝑉𝑉𝑉𝑉(log (𝐴𝐴))         (10) 
where 𝑉𝑉𝑉𝑉𝑉𝑉(𝐵𝐵) is a vector in Euclidean space by vectorizing the upper triangular matrix 𝐵𝐵:

𝑉𝑉𝑉𝑉𝑉𝑉(𝐵𝐵) =  �𝑏𝑏1,1, √2𝑏𝑏1,2,⋯ , √2𝑏𝑏1,𝑑𝑑, 𝑏𝑏2,2, √2𝑏𝑏2,3,⋯ , 𝑏𝑏𝑑𝑑,𝑑𝑑�
T

        (11) 

Since 𝑓𝑓 is a 6-dimensional feature mapping, the manifold feature vector 𝑎𝑎 to describe the cloud image is 21 dimensions. 10 

2.2.3 Combining manifold and texture features 

As described in Sect. 2.2.1 and 2.2.2, manifold and texture features can be extracted and integrated to represent the ground-

based infrared images. Besides the 4-dimensional texture features, the joint features of the infrared image have a total of 25 

dimensions. 

2.3 Classification 15 

The classifier used in this paper is the SVM, which exhibits prominent classification performance in the cloud type 

recognition experiments. It is a two-class classifier; its basic model is a linear classifier with the largest margin in the feature 

space. The margin maximization can be formulated as a convex quadratic programming problem. A simple linear function is 

chosen as the mapping kernel, which is validated by the cloud classification experiments. 

For multiple-classification task, the SVM is conducted between every two classes. If there are 𝑐𝑐 types, then the total 20 

number of classification operation is 𝑐𝑐(𝑐𝑐 − 1) 2⁄ . 𝑐𝑐 is set with 5 in this paper and the final result is determined by a voting 

policy. 

 Experiments and discussions 
In this section, we report experimental results and assess the performance of the proposed cloud classification method. We 

first validate the effects of the proposed features by conducting each experiment 50 times on two datasets, respectively. The 25 

results of 10-fold cross validation with different features are given in Table 3. Each dataset is divided into 10 subsets with 

the same size at random. One single subset is used for validation and the other 9 parts are taken as the training set. As Table 

3 illustrates, the overall accuracy of texture, manifold and combined features achieves 83.49%, 96.46% and 96.50% on the 

zenthial dataset while 78.01%, 82.38% and 85.12% on the whole-sky dataset, respectively. It can been seen that the texture 
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or manifold features alone don’t achieve a better performance than the joint features, which not only inherit the advantage of 

the texture features, but also own the characteristic of manifold features. On the whole, the method using the joint features 

performs best in the cross validation. 

Naturally, combined features are used for the cloud type recognition. In the experiment, each dataset is grouped into the 

training set and testing set. The training set is selected randomly from each category in accordance with a certain proportion 5 

1/10, 1/2 and 9/10, respectively and the rest part forms the testing set. Each experiment is implemented 50 times and the 

average accuracy is regarded as the final results of classification. 

To exhibit the recognition performance of the proposed method, we also compare with the other two models (Liu et al., 

2015; Cheng and Yu, 2015) to assess its performance in this experiment. Liu’s model employs WLBP feature with the KNN 

classifier based on the chi-square distance while Cheng’s method adopts the statistical and uniform LBP features with the 10 

Bayesian classifier. Note that we extract the statistical features from the greyscale images rather than from the RGB images 

so that the statistical features have only 8 dimension, as a result, without extra colour information provided, both of the two 

methods are adaptable to the infrared images. 

3.1 Results of the zenithal dataset 

The first experiment is performed on the zenithal dataset. Tabel 4 reports the overall recognition rates of the proposed 15 

method and the other methods. The proposed method gets the best results, with at least 2.5% improvement over Liu’s 

method and over 9.5% higher than Cheng’s method. Meanwhile, the proposed method demonstrates a more stable and more 

superior performance than the other two methods, especially when 1/10 of the dataset is treated as the training set. In this 

case, the proposed method is up to 90.85% on the overall accuracy while the other two methods achieve 81.30% and 81.64%, 

respectively. That means discriminative features used for classification can be gained even with insufficient training data as 20 

well. In Fig. 4, the classification results of the proposed method are demonstrated in the form of the confusion matrix when 

1/2 of the dataset constructs the training set while the rest 1/2 is used for testing. Each row of the matrix represents an actual 

class while each column represents the predicted class given by SVM. For example, the element in the second row and third 

column is the percentage of cululiform clouds misclassified as waveform clouds. Therefore, the recognition rate for each 

class is in the diagonal of the matrix. The discrimination rate of stratiform clouds is up to 100%, which indicates that 25 

stratiform clouds have the most significant features to be distinguished among five cloud types. Likewise, the results of the 

other four cloud types achieve over 93%. It is shown that a rather high accuracy of each cloud type has reached, which 

means the proposed method performs well in classifying the ground-based infrared zenithal images on the whole. 

3.2 Results of the whole-sky dataset 

The second experiment is performed on the whole-sky dataset, which is more challenging because there exits larger inner-30 

class difference than that of the zenthial dataset. The experimental configuration retains the same in Sec. 3.1. Table 5 lists the 

results of different methods. It is illustrated that the proposed method gains the overall accuracy of 78.27%, 83.54% and 
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85.01% as the proportion of the training set varies. In comparison, Liu’s method achieves 73.58%, 80.55% and 81.31% 

while Cheng’s method achieves 66.99%, 67.36% and 68.18%, correspondingly. Comparing to the other two methods, the 

experimental results indicate the effectiveness of the proposed method with an obvious improvement in the accuracy. Figure 

5 displays the confusion matrix of the whole-sky dataset when 1/2 for training. The number of each category in the training 

set is 123, 120, 120, 23 and 44, respectively and the remaining part is treated as the testing set. It is demonstrated that 5 

stratiform clouds and clear sky possess obvious characteristics for classification while cumuliform, waveform and cirriform 

clouds pose a great challenge for a high accuracy of classification. Cirriform clouds are likely to be confused with the clear 

sky and about 15.22% of cirriform cloud images are misclassified as the clear sky in the experiment. In the whole-sky image, 

when it is on the condition of cirriform clouds, the area of cirriform clouds may be just a fraction of the whole sky, making it 

hard to be distinguished correctly. What’s more, multiple cloud types could exist in the whole-sky condition, which may 10 

result in a relatively low accuracy of the single-type classification, like cumuliform, waveform and cirriform clouds. 

There are some misclassifications, just as demonstrated in Fig. 6. Figure 6(a) shows that stratiform clouds are recognized 

as waveform clouds. It can be seen that the cloud base has a little fluctuation and makes it similar to the waveform cloud. 

Figure 6(b) shows that cumuliform clouds are recognized as waveform clouds. We can distinguish it as waveform clouds by 

the shape but the strong vertical motion of cumuliform clouds makes it hard to differ from waveform clouds. Figure 6(c) 15 

shows that cumuliform clouds are recognized as cirriform clouds. In this image, besides cumuliform clouds, a little cirriform 

clouds can also be found. Figure 6(d) shows that waveform clouds are recognized as cumuliform clouds. It can be seen that 

both waveform and cumuliform clouds coexist in the sky. Figure 6(e) shows that cirriform clouds are recognized as 

cumuliform clouds. It is admitted that the whole-sky dataset is more complicated than the zenithal dataset as the weather 

conditions change. 20 

 Conclusions 
In this paper, a novel cloud classification method of the ground-based infrared images, including the zenithal and whole-sky 

datasets, is proposed. Besides the texture features computed from the GLCM, manifold features obtained from the SPD 

matrix manifold are combined together. With the joint features, the proposed method can improve the recognition rate of the 

cloud types dramatically. On the one hand, the joint features can inherit the advantages of the statistical features, which 25 

represent texture information in Euclidean space; on the other hand, the statistical learning method on the manifold can 

describe the non-Euclidean geometric structure of the image features and thus the proposed method can benefit from it for a 

high classification precision. The CovD is calculated by extracting 6-dimensional features including greyscale, first-order 

and second-order gradient information, and the mean values are subtracted from the feature vectors, which may improve the 

recognition performance to some extent, since it can remove the noises of the infrared images. The manifold feature vector is 30 

produced by mapping the SPD matrix into the tangent space and afterwards the combined feature vector is adopted for cloud 

type recognition with SVM. In future work, more suitable image features like Gabor or wavelet coefficients can be 

incorporated into the SPD matrix and the classification would be performed directly on the manifolds to improve the 

8 
 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-402
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 22 December 2017
c© Author(s) 2017. CC BY 4.0 License.



recognition rate further. Besides, feature extraction using deep learning method such as convolutional neural networks can be 

taken into account to increase the classification accuracy. It is found that the proposed method is effective to satisfy the 

requirement of the cloud classification task on the both zenithal and whole-sky datasets. The complex sky condition with 

multiple cloud types should arise our concern in the next work. 

 Code availability 5 
The code of the proposed method will be available online upon the acceptance of the paper. 

 Data availability 
The two ground-based infrared cloud datasets used in this paper will be available upon the acceptance of the paper. This will 

be helpful for further benchmarking ground-based infrared image classification. 
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Table 1. The sky condition classes and corresponding description. 

 

 

 

 

 

 

 

 

 

 

 

Sky condition classes Description Cloud types 

Stratiform clouds Horizontal, layered clouds that stretch out across the sky like a blanket St、As、Cs 

(Sc、Ac、Cb、Ns) 

Cumuliform clouds Thick clouds that are puffy in appearance, like large cotton balls Cu、Cb 

Waveform clouds Thin or thick clouds occurring in sheets or patches with wavy, rounded 

masses or rolls 

Sc、Ac、Cc 

Cirriform clouds Thin clouds; very wispy and feathery looking Ci 

Clear sky Clear No clouds 
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Table 2. The numbers of each class on two datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sky condition classes Zenithal Whole-sky 

Stratiform clouds 100 246 

Cumuliform clouds 100 240 

Waveform clouds 100 239 

Cirriform clouds 100 46 

Clear sky 100 88 

Total 500 859 
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Table 3. The 10-fold cross validated classification accuracy (%) on two datasets. 

 Zenithal Whole-sky 

Texture features 83.49 78.01 

Manifold features 96.46 82.38 

Combined features 96.50 85.12 
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Table 4. The overall classification accuracy (%) on the zenithal dataset. 

 1/10 1/2 9/10 

Liu’s method 81.64 92.24 93.48 

Cheng’s method 81.30 81.92 81.32 

Proposed method 90.85 95.98 96.36 
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Table 5. The overall classification accuracy (%) on the whole-sky dataset. 

 1/10 1/2 9/10 

Liu’s method 73.58 80.55 81.31 

Cheng’s method 66.99 67.36 68.18 

Proposed method 78.27 83.54 85.01 
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Figure 1: System framework. 
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Figure 2: Cloud samples from the zenithal dataset. (a) stratiform clouds, (b) cumuliform clouds, (c) waveform clouds, (d) cirriform 
clouds and (e) clear sky. 
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Figure 3: Cloud samples from the whole-sky dataset. (a) stratiform clouds, (b) cumuliform clouds, (c) waveform clouds, (d) 
cirriform clouds and (e) clear sky. 
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Figure 4: Confusion matrix (%) on the zenithal dataset. (1/2 for training and the overall accuracy is 95.98%) 
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Figure 5: Confusion matrix (%) on the whole-sky dataset. (1/2 for training and the overall accuracy is 83.54%) 
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Figure 6: Selected misclassified whole-sky images. (a) stratiform clouds to waveform clouds, (b) cumuliform clouds to waveform 
clouds, (c) cumuliform clouds to cirriform clouds, (d) waveform clouds to cumuliform clouds and (e) cirriform clouds to 
cumuliform clouds. 
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